skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hankel, Camille"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the global climate that is projected to weaken under future anthropogenic climate change. While many studies have investigated the AMOC’s response to different levels and types of forcing in climate models, relatively little attention has been paid to the AMOC’s sensitivity to the rate of forcing change, despite it also being highly uncertain in future emissions scenarios. In this study, I isolate the AMOC’s response to different rates of CO2increase in a state-of-the-art global climate model and find that the AMOC undergoes more severe weakening under faster rates of CO2change, even when the magnitude of CO2change is the same. I then propose an AMOC-ocean heat transport-sea ice feedback that enhances the decline of the circulation and explains the dependence on the rate of forcing change. The AMOC’s rate-sensitive behavior leads to qualitatively different climates (including differing Arctic sea ice evolution) at the same CO2concentration, highlighting how the rate of forcing change is itself a key driver of global climatic change. 
    more » « less
    Free, publicly-accessible full text available January 7, 2026
  2. Abstract. Abrupt and irreversible winter Arctic sea ice loss may occur under anthropogenic warming due to the disappearance of a sea ice equilibrium at athreshold value of CO2, commonly referred to as a tipping point. Previous work has been unable to conclusively identify whether a tippingpoint in winter Arctic sea ice exists because fully coupled climate models are too computationally expensive to run to equilibrium for manyCO2 values. Here, we explore the deviation of sea ice from its equilibrium state under realistic rates of CO2 increase todemonstrate for the first time how a few time-dependent CO2 experiments can be used to predict the existence and timing of sea ice tippingpoints without running the model to steady state. This study highlights the inefficacy of using a single experiment with slow-changing CO2to discover changes in the sea ice steady state and provides a novel alternate method that can be developed for the identification of tippingpoints in realistic climate models. 
    more » « less
  3. null (Ed.)
    Abstract Winter Arctic sea ice loss has been simulated with varying degrees of abruptness across global climate models (GCMs) run in phase 5 of the Coupled Model Intercomparison Project (CMIP5) under the high-emissions extended RCP8.5 scenario. Previous studies have proposed various mechanisms to explain modeled abrupt winter sea ice loss, such as the existence of a wintertime convective cloud feedback or the role of the freezing point as a natural threshold, but none have sought to explain the variability of the abruptness of winter sea ice loss across GCMs. Here we propose a year-to-year local positive feedback cycle in which warm, open oceans at the start of winter allow for the moistening and warming of the lower atmosphere, which in turn increases the downward clear-sky longwave radiation at the surface and suppresses ocean freezing. This situation leads to delayed and diminished winter sea ice growth and allows for increased shortwave absorption from lowered surface albedo during springtime. Last, the ocean stores this additional heat throughout the summer and autumn seasons, setting up even warmer ocean conditions that lead to further sea ice reduction. We show that the strength of this feedback, as measured by the partial temperature contributions of the different surface heat fluxes, correlates strongly with the abruptness of winter sea ice loss across models. Thus, we suggest that this feedback mechanism may explain intermodel spread in the abruptness of winter sea ice loss. In models in which the feedback mechanism is strong, this may indicate the possibility of hysteresis and thus irreversibility of sea ice loss. 
    more » « less